
LibTom Projects

LibreSoftwareMeeting
Dijon, France
July 5-9, 2005

Tom St Denis
tomstdenis@gmail.com

Sponsored by
Elliptic Semiconductor Inc. Secure Science Corporation

ellipticsemi.com securescience.net

Overview
● Introduction to LibTom projects

● History of projects

● Progressions

● Lessons learned

● Designing a library

● Descriptors

● Portable Software

● Profile Driven Optimization

● Secure Coding

What are the LibTom Projects?

● Series of seven libraries covering cryptography,
bignum math, polynomial math, bigfloat math
and network security

● All written from scratch in portable C
● Written to work well and be educational
● All public domain

– Distributed in source form only

– Manuals are in source + PDF format

Who uses them?

● Industry
– Products such as video games, embedded devices,

network routers, license engines

● Education
– LibTomMath used as reference

● Textbook used

– LibTomCrypt used as toolkit
● Has been cited academically

Who uses them (2)

● OSS
– Mozilla NSS, MatrixSSL, Paketto, Torque, Dropbear,

TCL, Ruby, Python, SILC, DigSig, Agent++,
Sharewidth, FreeOTFE, etc...

● Various
– Each release gets roughly 500 unique IP downloads

● Ranging from individuals to corporations

– Mirrored through BSD ports and Gentoo portage

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

9
6

9
7

9
8

9
9

1
0
0

1
0
1

1
0
2

1
0
3

1
0
4

1
0
5

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

Unique LibTomCrypt Downloaders# of downloaders

Why use them?

● Not just free, public domain
– License portrays values and intentions

● Builds anywhere
– Very portable (no configuration either)

● Builds out of box on x86, mips, arm, ppc, ...

● Competitively efficient
● Well documented

– In total there are over 500 pages of documentation

LibTomCrypt

● Cryptographic toolkit written in C

● Provides

– ciphers, hashes, PRNGs

– MACs (and ENC+AUTH modes like CCM/GCM)

– public key cryptography (RSA PKCS #1, DSA and EC-DSA)

– ASN.1 DER support

– simple and consistent API

– tons of documentation and commented source code
● LTC: Includes doxygen comments

● Builds out of the box with GCC and MSVC

LibTomMath
● Multi-Precision Math Toolkit written in C

● Provides

– Basic math (add, sub, mult, div, etc)

– Optimized routines (mult, reduction, exptmod)

– Number theoretic functions

– 300+ page textbook on the subject

– Well documented and commented source

– The de facto standard for
● SILC
● TCL Scripting Language
● Ruby Scripting Language

● Builds out of the box with GCC and MSVC

TomsFastMath
● Fast Fixed-Precision Math in C

– Meant for very fast mult/sqr/exptmod

– Largely based on LibTomMath

● Provides

– Basic math (add, sub, mult, div)

– Easy to tune ASM optimized multipliers

– Very fast exptmod (faster than OpenSSL)

● Builds with GCC on x86_32, x86_64, ARM and PPC32
boxes

● Mozilla NSS has plans to move to TomsFastMath

– They rewrote my Montgomery code for me :-)

History of the Projects

● Started LibTomCrypt in Dec'01
– Winter break from college

– Written to provide a generic crypto API

– Almost bought in 2003 by Sony :-)
● For less than the average cost of a low-priced car

– 1st release was December 21st 2001

– 100th release was December 31st 2004

– Currently version 1.05 (105th release)

History of Projects (2)

● Started LibTomMath in Dec'02
– ... winter break from college

– Written to improve upon MPI
● Faster and easier to read source code
● Very instructional personally

– Took only a few months to get stable and competitive

History of the Projects (3)

● Started LibTomNet in Jul'03
– Summer break ;-)

– An exercise in networking

● Started LibTomPoly in ... Dec'03
– ... guess

● Started LibTomFloat in May'04
– ... Summer break again

Progressions

● Started by using “batch files” as make scripts
– Quickly replaced that with makefiles

● Makefiles were very “hard coded”
– Slowly replaced that with a flexible build system

● Target compiler moved from Borland to GCC
– Used DJGPP and then Cygwin

– Now use GNU/Linux exclusively
● Develop on a dual-core AMD64, Intel Prescott P4 and an

AMD Athlon XP-M laptop :-)

Progressions (2)

● Used to densely pack code
– Now few functions (usually just one) per file

– Finding functions and distributing work easier
● Also easier to audit and fix

– LTC 1.05 is 209 lines/file (mpi.c accounting for 9000 lines)
● 175 lines/file (discounting mpi.c)

● Re-factored the header files
– Sorted by class

● Code used to be in one directory
– Sorted by class

Progressions (3)

● Used to do releases daily
– Take my time, test builds, try configurations

● Always took input from others
– Actively seek it now though

● Make changes that “suited me”
– Think about the user “customer” impact

Various Lessons Learned

● Setup is more important than execution
– Makes deployment easier

– Makes testing easier

● Intuition is very handy
– Recent ASN.1 DER bugs

– Being apprehensive means your cautious

Various Lessons Learned (2)

● A CVS (or SCM) even “locally” is very handy
– Multi-box development

– Ability to revert, see differences, etc

– Simple way to backup too (+cronjob)

– Prove lineage of code

● Be consistent
– Similar prototypes, documentation

– Helps lower learning curve

– Helps debug as well

Various Lessons Learned (3)
● Take time between releases

– “release early, release often” confusing
● Not really used in practice either
● All about how you stage a project (setting goals)

– Tracking multiple releases is more work
● Support emails can get tricky
● People will use outdated software

– Spend more time working on product not release
● Releases take roughly a day to finalize (after testing)

– If effort required not that high do it anyways
● Looks better and means less to add to a TODO list

Designing a Library

● Identify a clear problem and solution set
– Find reasonable solutions to given problem

– Sort solutions by work, benefit ratios

● Start from ground up
– Design a hierarchy of the functions required

● Helps profile code as well

Hierarchy.

Designing a Library (2)

● Setup a CVS (or SCM) first
– Helps keep work organized

● Start development with headers for common data
types and lowest level functions, error codes, etc.
– Test as you write

● Keep as few “untested functions” in your test path
● If you keep building on a tested hierarchy it's much easier

● Use tools that will be available to the user
– Use smart dependent libraries

Designing a Library (3)
● Get a stable make system in place early

– Get it out of the way (one less thing)

● Think of how to test from the start
– Include how to compare results (e.g. lengths, status)

● Document as you code
– Don't leave till the end (lesson learned)

● Set reasonable goals and deadlines
– Have something to keep yourself on track

– Keep your users informed

Designing a Library (4)
● Avoid “because it's free” as excuse to compromise

– Lowers the usefulness

– More work to fix later

– Creates “more noise”

– Sets bad impression forth
● Personal, professional and “OSS” specific

● Support is important

– Helps users, more users => more eyes

– Have an “email” address and not just mail list/forums

Promotion
● Website

– Simple but accurate, don't shroud things
● What, Why, How and Where

– Make contact info easy to find

● “Plug'ing”

– Keep it short and respectful

– Don't try to hide the plug

– Use some restraint, have modesty (pays off)

● Word of mouth

– If you build it ... they will spread it ;-)

The LibTomCrypt Difference
“Descriptors”

● Problem: common and consistent interface to
any number of hashes, ciphers or PRNGs

● Solution: table driven “descriptors”
– A “struct” with pointers to functions

– Have other data (block size, name) that describes the
module

● Similar to a C++ “class” but without the overhead

“Descriptors” (2)

● One type of descriptor per class of function
– One for ciphers, hashes and PRNGs

● Dependent code only uses tables
– e.g. CTR mode, OMAC, HMAC, etc

– Makes them algorithm agnostic

● Makes it easy to switch from one to another
– e.g. from AES to Twofish

● Also makes using optimized/hardware algo easier

CAST5 Descriptor

const struct ltc_cipher_descriptor cast5_desc = {
 "cast5", <= Name
 15,
 5, 16, 8, 16, <= Parameters (keysizes, block size, rounds)
 &cast5_setup, <= Pointers to the functions
 &cast5_ecb_encrypt,
 &cast5_ecb_decrypt,
 &cast5_test,
 &cast5_done,
 &cast5_keysize,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL
};

Various Snippets

In ctr_encrypt.c
 /* encrypt it */
 cipher_descriptor[ctr->cipher].ecb_encrypt(ctr->ctr, ctr->pad, &ctr->key);
 ctr->padlen = 0;

In omac_process.c
 /* ok if the block is full we xor in prev, encrypt and replace prev */
 if (omac->buflen == omac->blklen) {
 for (x = 0; x < omac->blklen; x++) {
 omac->block[x] ^= omac->prev[x];
 }
 cipher_descriptor[omac->cipher_idx].ecb_encrypt(
 omac->block, omac->prev, &omac->key);

“Descriptors” (3)

● Also makes interfacing with optimized modules
(e.g. hardware) easy
– Users can link against third party descriptors without

rebuilding LibTomCrypt

● Overall very flexible code base
– Has been contorted quite a bit in the field

“Descriptors” (4)

● Recent changes
– Cipher descriptors lacked support for hardware

● No “multi-block” modes
● No “done” function

– Updating code base was trivial but time consuming
● Should have done it originally
● Not part of the original problem set

– The problem evolves!

Portable Software
● Definition of “portable”

– You want to hear “it just works”

● “autoconf” is not your friend

– In fact some platforms don't have autoconf!

● Target language

– C99 becoming more prevalent

– Usually C90 is good enough
● Target C90 and you're covered
● Avoid some new C99 features (VLA and “restrict” for instance)
● “long long” very common at least

Portable Software (2)

● Target Toolchains
– You can expect to have

● make, gcc, cc1, as, ld, ar, objcopy, objdump, bash/tcsh/sh

– More realistically
● $(CC), $(AR), $(LD), ...

– You can't expect to have
● gdb, gprof, libtool, a shell other than “sh”, other compilers,

linkers, etc.
● Not always GNU variants either

– Think “unix make” vs. “GNU make”

Portable Software (3)

● Target Build
– Usually static archive

– Ideally provide the ability to libtool a shared object

– Avoid excessive flags
● -O2 or -O3 is enough (actually read the man pages about

the combinations)
– e.g. “-funroll-all-loops” is usually bad for performance

● Warnings are being added to new GCCs, assume people are
using gcc 3.0-3.3 not 3.4

– But do make them accessible (as they are handy)

Portable Software (4)

● Make no assumption about types
– Char can be signed

– Ranges are minimums

– Floating point types

– Endianess (if in doubt think neutral)

● Careful for
– Right shifts (undefined for signed)

– Casts to/from non-void

– Structure alignment

Portable Software (5)

● Endianess issues

– Aim for at least neutral

– Add support for common platforms afterwards
● mips, x86, ppc, ...

– Not always possible to optimize neatly

● Inline asm

– Sometimes required (profile!)

– Hazardous
● Can make “configuration nightmare” happen
● Not all GCCs are equal even on the same platform!

– # of registers changes based on build flags too

Portable Software (6)
● Other Oddities

– Not all platforms have a heap
● Use flexible heap macros instead

– Not all platforms have a hardware divider
● Avoid division at all costs

– Safe bet that stack usage >4KiB is a bust
● Use heap as trade off

– Unaligned writes are not part of ISO C

– Avoid using FPU related instructions if at all possible

Profile Driven Optimization
● Messed up code

– Usually the accepted “path” for speed

– Usually not that much faster anyways

● LT approach
– Lots of error checking

– Lots of optimization in specific hot spots

– No diminishing gains optimizations
● e.g. no point making code twice as hard to read for 1% speed

– Be one with the compiler output
● Know how to read assembler

Profile Driven Optimization (2)
● Pick efficient algorithms

– Comba not baseline (multiplication)

– Sliding window exponentiation not square-multiply

– Identify their hotspots
● Small pockets of “optimization” usually pay off

● Worth is not just in speed
– Ports of LT projects

– Educational use

● Experimentation

Profile Driven Optimization (3)
● Compilers are smart

– GCC 3.4.x in particular
● Understands “add with carry” and common multiplication

code
● Can perform code re-arrangement (unroll, hoisting, etc)

– Can usually schedule code very efficiently

● CPUs are smart too
– Athlon has deep OOE and three pipelines

● On most code quickly written assembler won't be faster
– Takes a lot of time to get smaller gains

Comba Multiplier

From bn_fast_s_mp_mul_digs.c

Inner loop (O(n2) level):
 for (iz = 0; iz < iy; ++iz) {
 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy);
 }
Conversion up to “mp_word” required or we get 32x32=32 .

.L130:
 movl (%ebp), %eax
 mull (%edi) <= note GCC is doing 32x32=64
 addl %eax, %ebx <= 64bit add using add/adc
 adcl %edx, %esi
 subl $4, %ebp
 addl $4, %edi
 decl %ecx
Note: GCC 3.4.3 can't do the same for 64bit CPUs! (YMMV)

Profile Driven Optimization (4)

● Results
– LTC ciphers/hashes comparable to OpenSSL

– LTM faster than most, about ½ of OpenSSL
● Beats out the popular LIP, RSAREF and MPI

– Also easier to read...

– TomsFastMath faster than or equal to OpenSSL
● Also easier to read as it's mostly C

– and based off of LibTomMath

Profile Driven Optimization (5)

● TomsFastMath approach

– Mostly portable C ripped from LTM

– ASM macros used in key locations
● Multiplication
● Squaring
● Modular Reduction

– All macros have the same interface

– Routines implemented once, only which macros are activated
changes at build time

– Achieves high performance with low code maintenance

TomsFastMath Macros (ISO C)
#define MONT_START
#define MONT_FINI
#define LOOP_END
#define LOOP_START mu = c[x] * mp

#define INNERMUL \
 do { fp_word t; \
 _c[0] = t = ((fp_word)_c[0] + (fp_word)cy) + \
 (((fp_word)mu) * ((fp_word)*tmpm++)); \
 cy = (t >> DIGIT_BIT); \
 } while (0)

#define PROPCARRY \
 do { fp_digit t = _c[0] += cy; cy = (t < cy); } while (0)

TomsFastMath Macros (ARMv4)
#elif defined(TFM_ARM)
#define MONT_START
#define MONT_FINI
#define LOOP_END
#define LOOP_START mu = c[x] * mp

#define INNERMUL \
asm(\
 " LDR r0,%1 \n\t" \
 " ADDS r0,r0,%0 \n\t" \
 " MOVCS %0,#1 \n\t" \
 " MOVCC %0,#0 \n\t" \
 " UMLAL r0,%0,%3,%4 \n\t" \
 " STR r0,%1 \n\t" \
:"=r"(cy),"=m"(_c[0]):"0"(cy),"r"(mu),"r"(*tmpm++),"1"(_c[0]):"r0");

#define PROPCARRY \
asm(\
 " LDR r0,%1 \n\t" \
 " ADDS r0,r0,%0 \n\t" \
 " STR r0,%1 \n\t" \
 " MOVCS %0,#1 \n\t" \
 " MOVCC %0,#0 \n\t" \
:"=r"(cy),"=m"(_c[0]):"0"(cy),"1"(_c[0]):"r0");

TomsFastMath Macros (x86_64)
#elif defined(TFM_X86_64)
#define MONT_START
#define MONT_FINI
#define LOOP_END
#define LOOP_START mu = c[x] * mp

#define INNERMUL \
asm(\
 "movq %5,%%rax \n\t" \
 "mulq %4 \n\t" \
 "addq %1,%%rax \n\t" \
 "adcq $0,%%rdx \n\t" \
 "addq %%rax,%0 \n\t" \
 "adcq $0,%%rdx \n\t" \
 "movq %%rdx,%1 \n\t" \
:"=g"(_c[LO]), "=r"(cy) \
:"0"(_c[LO]), "1"(cy), "r"(mu), "r"(*tmpm++) \
: "%rax", "%rdx", "%cc")

#define PROPCARRY \
asm(\
 "addq %1,%0 \n\t" \
 "setb %%al \n\t" \
 "movzbq %%al,%1 \n\t" \
:"=g"(_c[LO]), "=r"(cy) \
:"0"(_c[LO]), "1"(cy) \
: "%rax", "%cc")

TomsFastMath Macros (PPC32)
#elif defined(TFM_PPC32)
#define MONT_START
#define MONT_FINI
#define LOOP_END
#define LOOP_START mu = c[x] * mp

#define INNERMUL \
asm(\
 " mullw r0,%3,%4 \n\t" \
 " mullhwu r1,%3,%4 \n\t" \
 " addc r0,r0,%0 \n\t" \
 " addze r1,r1 \n\t" \
 " lwz r2,%1 \n\t" \
 " addc r0,r0,r2 \n\t" \
 " addze %0,r1 \n\t" \
 " stw r0,%1 \n\t" \
:"=r"(cy),"=m"(_c[0]):"0"(cy),"r"(mu),"r"(*tmpm++),"1"(_c[0]):"r0", "r1", "r2");

#define PROPCARRY \
asm(\
 " lwz r0,%1 \n\t" \
 " addc r0,r0,%0 \n\t" \
 " stw r0,%1 \n\t" \
 " xor %0,%0,%0 \n\t" \
 " addze %0,%0 \n\t" \
:"=r"(cy),"=m"(_c[0]):"0"(cy),"1"(_c[0]):"r0");

This is untested code. If you have a PPC box please see me after my talk :-)

Secure Coding

● Trust
– Don't trust input pointers

● Check for NULL

– Don't trust the contents of input structures
● Check index boundaries

– Performance loss is negligible

– Beware of signed vs. unsigned issues
● “x < y” can fail in meaning if y < 0 and x is unsigned

Typical Bounds Checking

From omac_process.c

Check for NULLs
 LTC_ARGCHK(omac != NULL); <= like assert macros
 LTC_ARGCHK(in != NULL);

Check array boundaries
 if ((err = cipher_is_valid(omac->cipher_idx)) != CRYPT_OK) {
 return err;
 }
 if ((omac->buflen > (int)sizeof(omac->block)) || (omac->buflen < 0) ||
 (omac->blklen > (int)sizeof(omac->block)) || (omac->buflen > omac->blklen)) {
 return CRYPT_INVALID_ARG;
 }

Secure Coding (2)

● Resource Checking
– Keep track of buffer size remaining

● Avoid overflows and overruns
● Example, DER encoder scans for sizes before writing a

single byte

– Do this as you code to avoid “lazy programmer”
problems

– Avoid typical bad functions
● gets, scanf, sprintf, strcpy, strcat, etc...

Secure Coding (3)

● Error checking
– Check all return codes

● Avoid “lazy programmer” syndrome

– Be consistent with error codes and their usages

● Oddities
– Use calloc not malloc

– Think about thread safety

About Myself
● Started “coding” at age 12 (1994)

– Wrote a BBS in Pascal and taught myself C

– “hacked” Turbo-C lite to allow programs to run outside the
IDE shortly afterwards ;-)

● Wrote a crypto messaging program at age 17
– Almost got sued by RSA for using RC5

● Started LibTomCrypt at age 19
– Basically have radically changed the way I develop software

ever since

