
1 July 5, 2005LSM 2005

http://arg0.net/encfs

2 July 5, 2005LSM 2005

http://arg0.net/encfs

EncFS Presentation

1. Introduction
2. Implementation

3. Operation

3 July 5, 2005LSM 2005

http://arg0.net/encfs

What is EncFS?

● an encrypted filesystem
– provides access enforcement

● cannot get around encryption by clicking 'cancel' at
password prompt or by rebooting machine with a boot disk

● a virtual filesystem
– translates an existing filesystem

● a user-space filesystem
– runs as a user process

4 July 5, 2005LSM 2005

http://arg0.net/encfs

virtual filesystems

● typically provide a view or translation of another
filesystem

● untranslated/proxy view:
– NFS

– SSH-FS

● translated view:
– encfs

– wayback

5 July 5, 2005LSM 2005

http://arg0.net/encfs

user-space filesystem

● Executes in user-space, not a kernel module
● simpler to develop

– user-space debugging tools
● valgrind
● debugger

– no panics!

● incurs more overhead then a kernel module
– requests must go through the kernel and be redirected

to the user-space process

6 July 5, 2005LSM 2005

http://arg0.net/encfs

Motivation

● Secure laptop data during travels
– replacement for CFS

– began early 2003 during travels

● Personal learning – creation of filesystems using
user-space APIs
– originally written using LUFS

– later moved to FUSE for first public release

● Rainy-day project

7 July 5, 2005LSM 2005

http://arg0.net/encfs

Reinventing the Wheel?

● Existing choices
– loopback encrypted filesystem

● many options
– crypto-loop included in mainline kernels
– [many out-of-tree implementations: dm-crypt, BestCrypt, etc ...]

● inconvenient
– fixed partition size wastes space
– inconvenient for backups (especially incremental backups)

– pass-through filesystem
● one well known implementation: CFS
● CFS is slow and difficult to setup

8 July 5, 2005LSM 2005

http://arg0.net/encfs

CFS
● Cryptographic FileSystem – Matt Blaze, 1993

– CFS runs as daemon and acts as an NFS server

– DES (or other) in ECB mode with whitening

– 'secure mode' stores IV in group owner bits

● impressions
– great idea

– slow
● single threaded
● lots of overhead
● 1993 era CPUs

CFS

FS

NFS
Client

Virtual
FS

9 July 5, 2005LSM 2005

http://arg0.net/encfs

TCFS

● TCFS – University of Salerno, Italy 1996
– extend CFS, integrating into Linux kernel

– faster then CFS and many more features, but adds
kernel dependency – essentially dead by Linux 2.4

– group file sharing (using threshold scheme)

– each block encrypted with a derived key (hash of key
& block number)

– block integrity checks using hash

10 July 5, 2005LSM 2005

http://arg0.net/encfs

EcryptFS

● kernel based per-file encrypted filesystem
– http://sourceforge.net/projects/ecryptfs

– attempt to make a more fine-grained filesystem
● file-level encryption settings instead of volume-level

– user-space component for keying

– development more difficult in kernel space
● recently heard on ecryptfs mailing list: “the next time I get the bright

idea to implement a cryptographic filesystem, remind me to do it in
userspace so I can keep my sanity :-)”

– potential for less overhead then userspace solutions

11 July 5, 2005LSM 2005

http://arg0.net/encfs

EncFS Presentation

1. Introduction
2. Implementation

3. Operation

12 July 5, 2005LSM 2005

http://arg0.net/encfs

Block FS vs Proxy FS

● Encrypted block
device
– good if encrypting

entire partition

– good when metadata
contains valuable
information

● number of files
● file permissions
● file modification dates

● Proxy encryption
– separation of trust

● storage trust
● security trust

– good when amount of
data to encrypt is
variable

– makes automated
backups easier

13 July 5, 2005LSM 2005

http://arg0.net/encfs

Separation of Trust

Local System
(trusted to be secure)

Trusted Storage
(trusted not to lose data)

● trusted storage may not be
trusted for security
– NFS

– Samba share

– GmailFS (gmail as storage)

– ...

● keep data encrypted until it
is needed

Smart Card
(tamper resistant)

Example, not in EncFS

14 July 5, 2005LSM 2005

http://arg0.net/encfs

EncFS Components

EncFS

libencfs

callback layer

libfuse
logging OpenSSL

Linux Kernel

fuse.ko

15 July 5, 2005LSM 2005

http://arg0.net/encfs

FUSE Overview

● Filesystem in UserSpacE
– Open Source project: http://fuse.sf.net/

– Exports Linux kernel filesystem API to user-space

● Two interface levels
– raw (binary protocol over pipe to kernel)

● inode based API
● example: sulf (C# interface -- http://arg0.net/sulf)

– cooked (libfuse, path-based C API)
● encfs

16 July 5, 2005LSM 2005

http://arg0.net/encfs

Fuse.ko API

● Binary protocol
– C structures using native memory layout

– Approx 14 structure types sent to fuse.ko

– Approx 7 structure types received from fuse.ko

● Command format

Header

Body
(depends on opcode)

struct fuse_in_header
{

u32 len, opcode
u64 unique, nodeid
u32 uid, gid, pid, padding

}

17 July 5, 2005LSM 2005

http://arg0.net/encfs

FUSE Example

ls /foo/

Kernel EncFS

FUSE libfuse

LOOKUP 1, “foo”

OPENDIR 4

nodeid = 4

fd=1

READDIR 4, fd=1

LOOKUP 4, [file]

RELEASEDIR 4, fd=1

18 July 5, 2005LSM 2005

http://arg0.net/encfs

libfuse Overview

● C API
● mounts filesystem

– (using fusermount helper program)

● communicates with kernel FUSE module
● handles a single filesystem

– in contrast, sulf can serve multiple filesystems from
the same event loop

● threaded and non-threaded options

19 July 5, 2005LSM 2005

http://arg0.net/encfs

libfuse vs Fuse.ko

● libfuse
– path based API

– trivial filesystem is a
dozen lines

– automatic threading
support

– interface is with C
callbacks

– backward
compatibility

● fuse.ko
– inode base API

– trivial filesystem may
be hundreds of lines

– need to implement
own thread control

– interface can be in any
language you like

– versioning only

20 July 5, 2005LSM 2005

http://arg0.net/encfs

libfuse example
Implementation of hello-world readdir callback:

int hello_readdir(const char *path, void *buf,
fuse_fill_dir_t filler, ...)

{
filler(buf, “.”, NULL, 0);
filler(buf, “..”, NULL, 0);
filler(buf, “hello”, NULL, 0);
return 0;

}

21 July 5, 2005LSM 2005

http://arg0.net/encfs

Anatomy of EncFS

● Encfs callback layer is
called by libfuse

● requests passed on to
appropriate DirNode or
FileNode

● NameIO interface for
name encoding

● FileIO interface for
data encoding

libfuse

encfs C
callback layer

DirNode

FileNode

cache

FileIO

NameIO

22 July 5, 2005LSM 2005

http://arg0.net/encfs

EncFS Encryption Overview

● FileNode sends
read/write requests
through FileIO
instance

● FileIO instances form
chain

● BlockFileIO layer
converts requests into
block-oriented requests

FileIO

Block Oriented

Cipher

Cipher

Raw

MAC

CipherMAC Raw

Processing Chain

23 July 5, 2005LSM 2005

http://arg0.net/encfs

Passphrase handling

● Each filesystem uses a randomly generated key
(the volume key)

● Volume key is stored encrypted using user-
supplied key

● Benefits
– ability to quickly change password

– easy to extend to allow key recovery options
(secondary password, group sharing, etc)

24 July 5, 2005LSM 2005

http://arg0.net/encfs

Configuration

● Each filesystem contains a file “.encfs5”
– .encfs3 in encfs 0.x, .encfs4 in encfs 1.0.x

● Contains key/value configuration pairs for:
– encryption options, including

● algorithm (AES, Blowfish)
● key size (128 – 256 bit)

– MAC headers, per-file headers

– filesystem block size (efficiency vs latency tradeoff)

25 July 5, 2005LSM 2005

http://arg0.net/encfs

Supporting Unix File Semantics

● EncFS must support standard Unix semantics
– open can create files for write which have read-only

permissions – common behavior from tar

● But some behavior can be different
– rename a directory causes files time stamps' to be

updated

– most noticeable differences in 'paranoia' mode:
● hard links not allowed (as file data is tied to name)

26 July 5, 2005LSM 2005

http://arg0.net/encfs

EncFS Presentation

1. Introduction
2. Implementation

3. Operation

27 July 5, 2005LSM 2005

http://arg0.net/encfs

Modes of Operation

● File name encryption options
● cipher choice
● key size
● filesystem block size

– block encryption & stream encryption

● Initialization Vector chaining options
● Message Authentication Code headers

28 July 5, 2005LSM 2005

http://arg0.net/encfs

File Name Encryption
● File naming

– files are encrypted and then base-64 encoded
● slightly modified base-64 to eliminate '/' and '.' characters

– stream encryption: output size is multiple of original
● simplest to implement, standard until encfs 1.1

– block encryption: output size is multiple of block size

– 16-bit MAC used as IV and prepended to name
● randomizes output in stream mode

encfs-presentation.sxi Hash

Encrypt

IV
IV encrypted-name

29 July 5, 2005LSM 2005

http://arg0.net/encfs

Ciphers

● OpenSSL provides cipher options
– AES (16-byte block cipher, 128-256 bit keys)

– blowfish (8-byte block cipher, 128-256 bit keys)

● Earlier versions had partial support for another
crypto library (Botan), but OpenSSL's interface
was easier to use

30 July 5, 2005LSM 2005

http://arg0.net/encfs

Key Size

● Although OpenSSL may support a wider range of
key sizes (particularly for blowfish), encfs
supports:
– AES – 128, 192, & 256 bit keys

– Blowfish – 128, 160, 192, 224, & 256 bit keys

● directly affects the size of the random key
● indirectly changes the number of encryption

rounds within the cipher

31 July 5, 2005LSM 2005

http://arg0.net/encfs

Filesystem Block Size

● EncFS is block based
– all reads and writes are for blocks

– block size is user-defined from 64 to 4096 bytes

– small block size favors random access speed but adds
a higher percentage of overhead

– large block size favors data throughput but slows
random read/write

– unlike a real filesystem, a large block size doesn't
waste space (partial blocks are not padded)

● stream mode: shuffle | encrypt {IV1} | flip | shuffle | encrypt {IV2}

32 July 5, 2005LSM 2005

http://arg0.net/encfs

Initialization Vector Chaining

● Without chaining
– the file 'X' in a/X is encrypted the same was as b/X

– gives away information about the file names (which
files have the same name)

● With chaining
– full path to a file determines the initialization vector

dir1/ dir2/
file

dataheader

33 July 5, 2005LSM 2005

http://arg0.net/encfs

Message Authentication Code headers

● adds MAC header for every block in a file
● currently only a 64-bit reduced SHA-1 is offered
● 512 byte block size becomes 504 bytes data + 8

byte MAC

HDR MAC DATA MAC DATA

Block Size (512 default)

34 July 5, 2005LSM 2005

http://arg0.net/encfs

Conclusion

● EncFS has been developed in increments
– a single option will often be added first

– the most useful options expanded to allow alternatives

● User input and feedback required for future
development
– mailing list: encfs-users@lists.sourceforge.net

● Future development
– wide-block ciphers (EME, CMC)

– per-file encryption options, following ecryptfs goals

35 July 5, 2005LSM 2005

http://arg0.net/encfs

Component Breakdown

Components by Size

crypto

generic

callbacks

config

logging

● Encfs
– fuse callbacks and

setup

● Libencfs
– Crypto

– Config

– Generic FS code

● Logging
– librlog (separate)

Complexity Perspective

EncFS
0.x

CFS Ext2 EncFS
1.0.x

Ext3 TCFS EncFS
1.1.x

Reiser3 Reiser4
(58k)

XFS
(92k)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

Lines of Code in FS Implementations

37 July 5, 2005LSM 2005

http://arg0.net/encfs

Performance

● Performance scales
with CPU speed

● Chart results
– 800Mhz laptop

(underclocked to
improve benchmark
consistency)

– encfs 1.2.2

– external USB drive

– XFS filesystem
XFS stan

dard
para
noia

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

Block IO Performance

Block Read

Block Write

38 July 5, 2005LSM 2005

http://arg0.net/encfs

EncFS History

● 0.2 (Oct 22, 2003) – 0.6
(Feb 7, 2004)

– no configurable options

– stream cipher used on partial
blocks and filenames

● 1.0 (Feb 27, 2004) – 1.0.4
(Mar 26, 2004)

– modular encryption

– logging library split to
separate project (librlog)

● 1.1.0 (May 18, 2004) –
1.1.11-4 (Jan 12, 2005)

– IV chaining

– per-file headers

– internationalization (rosetta)

● 1.2.0 (Feb 10, 2005) – 1.1.2
(May 12, 2005)

– improve compatibility by
using new FUSE features

– encfs core moved to shared
library

