View file src/colab/nlp_from_scratch_translation_with_a_sequence_to_sequence_network_with_new_dataloader_without_attention.py - Download

# -*- coding: utf-8 -*-
"""NLP From Scratch: Translation with a Sequence to Sequence Network with new dataloader without attention.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/13fwa4tua5orLhLP7spa5yEFetIkNNOuv

Translation

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Author: Sean Robertson

Modified by Jacques Bailhache

This is the third and final tutorial on doing “NLP From Scratch”, where we write our own classes and functions to preprocess the data to do our NLP modeling tasks. We hope after you complete this tutorial that you’ll proceed to learn how torchtext can handle much of this preprocessing for you in the three tutorials immediately following this one.

In this project we will be teaching a neural network to translate from French to English.

[KEY: > input, = target, < output]

> il est en train de peindre un tableau .
= he is painting a picture .
< he is painting a picture .

> pourquoi ne pas essayer ce vin delicieux ?
= why not try that delicious wine ?
< why not try that delicious wine ?

> elle n est pas poete mais romanciere .
= she is not a poet but a novelist .
< she not not a poet but a novelist .

> vous etes trop maigre .
= you re too skinny .
< you re all alone .

… to varying degrees of success.

This is made possible by the simple but powerful idea of the sequence to sequence network, in which two recurrent neural networks work together to transform one sequence to another. An encoder network condenses an input sequence into a vector, and a decoder network unfolds that vector into a new sequence.

![image.png]()

To improve upon this model we’ll use an attention mechanism, which lets the decoder learn to focus over a specific range of the input sequence.

Recommended Reading:

I assume you have at least installed PyTorch, know Python, and understand Tensors:

    https://pytorch.org/ For installation instructions

    Deep Learning with PyTorch: A 60 Minute Blitz to get started with PyTorch in general

    Learning PyTorch with Examples for a wide and deep overview

    PyTorch for Former Torch Users if you are former Lua Torch user

It would also be useful to know about Sequence to Sequence networks and how they work:

    Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

    Sequence to Sequence Learning with Neural Networks

    Neural Machine Translation by Jointly Learning to Align and Translate

    A Neural Conversational Model

You will also find the previous tutorials on NLP From Scratch: Classifying Names with a Character-Level RNN and NLP From Scratch: Generating Names with a Character-Level RNN helpful as those concepts are very similar to the Encoder and Decoder models, respectively.

Requirements
"""

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import re
import random

import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

import numpy as np
from torch.utils.data import TensorDataset, DataLoader, RandomSampler

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

"""Loading data files

The data for this project is a set of many thousands of English to French translation pairs.

This question on Open Data Stack Exchange pointed me to the open translation site https://tatoeba.org/ which has downloads available at https://tatoeba.org/eng/downloads - and better yet, someone did the extra work of splitting language pairs into individual text files here: https://www.manythings.org/anki/

The English to French pairs are too big to include in the repository, so download to data/eng-fra.txt before continuing. The file is a tab separated list of translation pairs:

I am cold.    J'ai froid.

Note

Download the data from here and extract it to the current directory.

Similar to the character encoding used in the character-level RNN tutorials, we will be representing each word in a language as a one-hot vector, or giant vector of zeros except for a single one (at the index of the word). Compared to the dozens of characters that might exist in a language, there are many many more words, so the encoding vector is much larger. We will however cheat a bit and trim the data to only use a few thousand words per language.

![image.png]()

We’ll need a unique index per word to use as the inputs and targets of the networks later. To keep track of all this we will use a helper class called Lang which has word → index (word2index) and index → word (index2word) dictionaries, as well as a count of each word word2count which will be used to replace rare words later.
"""

!rm data.zip
!rm -r data
!wget https://download.pytorch.org/tutorial/data.zip
!unzip data.zip
!head -n 20 data/eng-fra.txt

SOS_token = 0
EOS_token = 1

class Lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.word2count = {}
        self.index2word = {0: "SOS", 1: "EOS"}
        self.n_words = 2  # Count SOS and EOS

    def addSentence(self, sentence):
        indexes = []
        for word in sentence.split(' '):
            indexes.append(self.addWord(word))
        return indexes

    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.word2count[word] = 1
            self.index2word[self.n_words] = word
            self.n_words += 1
            return self.n_words - 1
        else:
            self.word2count[word] += 1
            return self.word2index[word]

testlang = Lang("test")
print(testlang.addWord("hello"))
print(testlang.addWord("bye"))
print(testlang.addWord("hello"))
print(testlang.addSentence("hello man bye"))

"""The files are all in Unicode, to simplify we will turn Unicode characters to ASCII, make everything lowercase, and trim most punctuation."""

# Turn a Unicode string to plain ASCII, thanks to
# https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

# Lowercase, trim, and remove non-letter characters
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z!?]+", r" ", s)
    return s.strip()

"""Since there are a lot of example sentences and we want to train something quickly, we’ll trim the data set to only relatively short and simple sentences. Here the maximum length is MAX_LENGTH words (that includes ending punctuation)."""

MAX_LENGTH = 8

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s ",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)

def filterPair(p):
    # return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)
    c1 = len(p[0].split(' ')) < MAX_LENGTH
    c2 = len(p[1].split(' ')) < MAX_LENGTH
    c3 = p[1].startswith(eng_prefixes)
    # print(f"c1={c1} c2={c2} c3={c3}")
    return c1 and c2

def filterPairs(pairs):
    return [pair for pair in pairs if filterPair(pair)]

"""To read the data file we will split the file into lines, and then split lines into pairs. The files are all English → Other Language, so if we want to translate from Other Language → English I added the reverse flag to reverse the pairs."""

def readLangs(langname1, langname2, reverse=False):

    lang1 = Lang(langname1)
    lang2 = Lang(langname2)

    print("Reading lines...")
    # Read the file and split into lines
    lines = open('data/%s-%s.txt' % (langname1, langname2), encoding='utf-8').\
        read().strip().split('\n')

    pairs = []

    for l in lines:
        s1, s2 = [normalizeString(s) for s in l.split('\t')]
        if filterPair([s1, s2]):
            t1 = lang1.addSentence(s1)
            t2 = lang2.addSentence(s2)
            if reverse:
                pairs.append([t2, t1])
            else:
                pairs.append([t1, t2])

    if reverse:
        return lang2, lang1, pairs
    else:
        return lang1, lang2, pairs

def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')]

def tensorFromSentence(lang, sentence):
    indexes = indexesFromSentence(lang, sentence)
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(1, -1)

def tensorFromIndexes(indexes):
    return torch.tensor(indexes, dtype=torch.long, device=device).view(1, -1)

def sentenceFromIndexes(lang, indexes):
    return [lang.index2word[index] for index in indexes]

"""The full process for preparing the data is:

    Read text file and split into lines, split lines into pairs

    Normalize text, filter by length and content

    Make word lists from sentences in pairs
"""

def prepareData(lang1, lang2, reverse=False):
    input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
    print("Read %s sentence pairs" % len(pairs))
    print("Counted words:")
    print(input_lang.name, input_lang.n_words)
    print(output_lang.name, output_lang.n_words)
    return input_lang, output_lang, pairs

input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))
print(pairs[15])
print(sentenceFromIndexes(input_lang, pairs[15][0]))
print(sentenceFromIndexes(output_lang, pairs[15][1]))

def get_dataloader(batch_size):
    input_lang, output_lang, pairs = prepareData('eng', 'fra', True)

    n = len(pairs)
    input_ids = np.zeros((n, MAX_LENGTH), dtype=np.int32)
    target_ids = np.zeros((n, MAX_LENGTH), dtype=np.int32)

    for idx, (inp_ids, tgt_ids) in enumerate(pairs):
        inp_ids.append(EOS_token)
        tgt_ids.append(EOS_token)
        input_ids[idx, :len(inp_ids)] = inp_ids
        target_ids[idx, :len(tgt_ids)] = tgt_ids

    train_data = TensorDataset(torch.LongTensor(input_ids).to(device),
                               torch.LongTensor(target_ids).to(device))

    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
    return input_lang, output_lang, train_dataloader

batch_size = 5
input_lang, output_lang, train_dataloader = get_dataloader(batch_size)
for data in train_dataloader:
    print(data)
    inp, out = data
    print(f"inp = {inp}")
    print(f"out = {out}")
    break

"""The Seq2Seq Model

A Recurrent Neural Network, or RNN, is a network that operates on a sequence and uses its own output as input for subsequent steps.

A Sequence to Sequence network, or seq2seq network, or Encoder Decoder network, is a model consisting of two RNNs called the encoder and decoder. The encoder reads an input sequence and outputs a single vector, and the decoder reads that vector to produce an output sequence.

![image.png]()

Unlike sequence prediction with a single RNN, where every input corresponds to an output, the seq2seq model frees us from sequence length and order, which makes it ideal for translation between two languages.

Consider the sentence Je ne suis pas le chat noir → I am not the black cat. Most of the words in the input sentence have a direct translation in the output sentence, but are in slightly different orders, e.g. chat noir and black cat. Because of the ne/pas construction there is also one more word in the input sentence. It would be difficult to produce a correct translation directly from the sequence of input words.

With a seq2seq model the encoder creates a single vector which, in the ideal case, encodes the “meaning” of the input sequence into a single vector — a single point in some N dimensional space of sentences.
The Encoder

The encoder of a seq2seq network is a RNN that outputs some value for every word from the input sentence. For every input word the encoder outputs a vector and a hidden state, and uses the hidden state for the next input word.

![image.png]()
"""

class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size, dropout_p=0.1):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size

        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.dropout = nn.Dropout(dropout_p)

    def forward(self, input):
        # print(f"Encoder input: {input[0]}")
        embedded = self.embedding(input)
        dropped = self.dropout(embedded)
        # embedded = self.embedding(input)
        output, hidden = self.gru(dropped)
        # print(f"EncoderRNN input:{input.shape} embedded:{embedded.shape} dropped:{dropped.shape} output:{output.shape} hidden:{hidden.shape}")
        return output, hidden

"""The Decoder

The decoder is another RNN that takes the encoder output vector(s) and outputs a sequence of words to create the translation.
Simple Decoder

In the simplest seq2seq decoder we use only last output of the encoder. This last output is sometimes called the context vector as it encodes context from the entire sequence. This context vector is used as the initial hidden state of the decoder.

At every step of decoding, the decoder is given an input token and hidden state. The initial input token is the start-of-string  token, and the first hidden state is the context vector (the encoder’s last hidden state).

![image.png]()
"""

class DecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.embedding = nn.Embedding(output_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.out = nn.Linear(hidden_size, output_size)

    def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
        batch_size = encoder_outputs.size(0)
        decoder_input = torch.empty(batch_size, 1, dtype=torch.long, device=device).fill_(SOS_token)
        decoder_hidden = encoder_hidden
        decoder_outputs = []

        for i in range(MAX_LENGTH):
            decoder_output, decoder_hidden  = self.forward_step(decoder_input, decoder_hidden)
            decoder_outputs.append(decoder_output)

            if target_tensor is not None:
                # Teacher forcing: Feed the target as the next input
                decoder_input = target_tensor[:, i].unsqueeze(1) # Teacher forcing
            else:
                # Without teacher forcing: use its own predictions as the next input
                _, topi = decoder_output.topk(1)
                decoder_input = topi.squeeze(-1).detach()  # detach from history as input

        decoder_outputs = torch.cat(decoder_outputs, dim=1)
        decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)
        # print(f"DecoderRNN encoder_outputs:{encoder_outputs.shape} encoder_hidden:{encoder_hidden.shape} target_tensor:{target_tensor.shape} decoder_outputs:{decoder_outputs.shape} decoder_hidden:{decoder_hidden.shape}")
        return decoder_outputs, decoder_hidden, None # We return `None` for consistency in the training loop

    def forward_step(self, input, hidden1):
        output1 = self.embedding(input)
        output2 = F.relu(output1)
        output3, hidden = self.gru(output2, hidden1)
        output = self.out(output3)
        # print(f"DecoderRNN step input:{input.shape} hidden1:{hidden1.shape} output1:{output1.shape} output2:{output2.shape} output3:{output3.shape} hidden:{hidden.shape} output:{output.shape}")
        return output, hidden

"""Training the Model

To train we run the input sentence through the encoder, and keep track of every output and the latest hidden state. Then the decoder is given the  token as its first input, and the last hidden state of the encoder as its first hidden state.

“Teacher forcing” is the concept of using the real target outputs as each next input, instead of using the decoder’s guess as the next input. Using teacher forcing causes it to converge faster but when the trained network is exploited, it may exhibit instability.

You can observe outputs of teacher-forced networks that read with coherent grammar but wander far from the correct translation - intuitively it has learned to represent the output grammar and can “pick up” the meaning once the teacher tells it the first few words, but it has not properly learned how to create the sentence from the translation in the first place.

Because of the freedom PyTorch’s autograd gives us, we can randomly choose to use teacher forcing or not with a simple if statement. Turn teacher_forcing_ratio up to use more of it.
"""

def train_epoch(dataloader, encoder, decoder, encoder_optimizer,
          decoder_optimizer, criterion):

    total_loss = 0
    for data in dataloader:
        input_tensor, target_tensor = data

        encoder_optimizer.zero_grad()
        decoder_optimizer.zero_grad()

        encoder_outputs, encoder_hidden = encoder(input_tensor)
        decoder_outputs, _, _ = decoder(encoder_outputs, encoder_hidden, target_tensor)

        loss = criterion(
            decoder_outputs.view(-1, decoder_outputs.size(-1)),
            target_tensor.view(-1)
        )
        loss.backward()

        encoder_optimizer.step()
        decoder_optimizer.step()

        total_loss += loss.item()

    return total_loss / len(dataloader)

"""This is a helper function to print time elapsed and estimated time remaining given the current time and progress %."""

import time
import math

def asMinutes(s):
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)

def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return '%s (- %s)' % (asMinutes(s), asMinutes(rs))

"""Plotting results

Plotting is done with matplotlib, using the array of loss values plot_losses saved while training.
"""

import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np

def showPlot(points):
    plt.figure()
    fig, ax = plt.subplots()
    # this locator puts ticks at regular intervals
    loc = ticker.MultipleLocator(base=0.2)
    ax.yaxis.set_major_locator(loc)
    plt.plot(points)

"""The whole training process looks like this:

    Start a timer

    Initialize optimizers and criterion

    Create set of training pairs

    Start empty losses array for plotting

Then we call train many times and occasionally print the progress (% of examples, time so far, estimated time) and average loss.
"""

def train(train_dataloader, encoder, decoder, n_epochs, learning_rate=0.001,
               print_every=100, plot_every=100):
    start = time.time()
    plot_losses = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total = 0  # Reset every plot_every

    encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate)
    criterion = nn.NLLLoss()

    for epoch in range(1, n_epochs + 1):
        loss = train_epoch(train_dataloader, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion)
        print_loss_total += loss
        plot_loss_total += loss

        if epoch % print_every == 0:
            print_loss_avg = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' % (timeSince(start, epoch / n_epochs),
                                        epoch, epoch / n_epochs * 100, print_loss_avg))

        if epoch % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0

    showPlot(plot_losses)

"""Evaluation

Evaluation is mostly the same as training, but there are no targets so we simply feed the decoder’s predictions back to itself for each step. Every time it predicts a word we add it to the output string, and if it predicts the EOS token we stop there. We also store the decoder’s attention outputs for display later.


"""

def evaluate(encoder, decoder, indexes, input_lang, output_lang):
    with torch.no_grad():
        input_tensor = tensorFromIndexes(indexes)

        encoder_outputs, encoder_hidden = encoder(input_tensor)
        decoder_outputs, decoder_hidden, decoder_attn = decoder(encoder_outputs, encoder_hidden)

        _, topi = decoder_outputs.topk(1)
        decoded_ids = topi.squeeze()

        decoded_words = []
        for idx in decoded_ids:
            if idx.item() == EOS_token:
                decoded_words.append('')
                break
            decoded_words.append(output_lang.index2word[idx.item()])
    return decoded_words, decoder_attn

"""We can evaluate random sentences from the training set and print out the input, target, and output to make some subjective quality judgements:"""

def evaluateRandomly(encoder, decoder, n=10):
    for i in range(n):
        pair = random.choice(pairs)
        print('input :', sentenceFromIndexes(input_lang, pair[0]))
        print('target:', sentenceFromIndexes(output_lang, pair[1]))
        output_words, _ = evaluate(encoder, decoder, pair[0], input_lang, output_lang)
        output_sentence = ' '.join(output_words)
        print('output:', output_sentence)
        print('')

"""Training and Evaluating

With all these helper functions in place (it looks like extra work, but it makes it easier to run multiple experiments) we can actually initialize a network and start training.

Remember that the input sentences were heavily filtered. For this small dataset we can use relatively small networks of 256 hidden nodes and a single GRU layer. After about 40 minutes on a MacBook CPU we’ll get some reasonable results.

Note

If you run this notebook you can train, interrupt the kernel, evaluate, and continue training later. Comment out the lines where the encoder and decoder are initialized and run trainIters again.

"""

hidden_size = 128
batch_size = 32

input_lang, output_lang, train_dataloader = get_dataloader(batch_size)

encoder = EncoderRNN(input_lang.n_words, hidden_size).to(device)
# decoder = AttnDecoderRNN(hidden_size, output_lang.n_words).to(device)
decoder = DecoderRNN(hidden_size, output_lang.n_words).to(device)

# train(train_dataloader, encoder, decoder, 80, print_every=5, plot_every=5)
train(train_dataloader, encoder, decoder, 10, print_every=1, plot_every=5)

"""Set dropout layers to eval mode"""

encoder.eval()
decoder.eval()
evaluateRandomly(encoder, decoder)

input_sentence = "vous devriez plutot boire un verre d eau"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)

input_sentence = "je suis votre ami"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)

input_sentence = "vous avez un beau chat"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)

input_sentence = "vous avez bien fait"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)

input_sentence = "comment savez vous ?"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)

input_sentence = "il est alle a l ecole"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)

input_sentence = "je ne le crois pas"
output_words, _ = evaluate(encoder, decoder, indexesFromSentence(input_lang, input_sentence), input_lang, output_lang)
output_sentence = ' '.join(output_words)
print(output_sentence)